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Abstract. Managing the stress-strain state of rock masses will enable the prediction and assurance of safe mining 

operations during the exploitation of enterprises. Therefore, the authors of the article have established that one of the 
key characteristics that are significant for controlling the stress-strain state of rock masses and ensuring their effective 
destruction during disintegration are the strength limit and residual strength indicators of the samples. These parameters 
are determined based on diagrams that reflect the dependence of normal stress on longitudinal deformation during the 
ultimate destruction of materials. It should also be noted that the results of the studies conducted are needed directly at 
the mining enterprise to make decisions based on the information obtained about the properties of rocks, and this 
equipment is not available at the sites themselves. The purpose of the article is to develop an analytical method for 
calculating the parameters of cylindrical rock sample crushing diagrams based on their wedge-shaped failure mode in 
order to control the stress-strain state of the rock mass and increase the efficiency of failure during disintegration. The 
authors analytically modelled the process of destruction of cylindrical rock samples during wedge-shaped destruction 
using experimental values of four rock property indicators: shear strength, internal and external friction coefficients, and 
elastic modulus. The limits and residual strength of the samples are equivalent to analytical data calculated from the 
normal stress-longitudinal strain diagrams obtained on pressing equipment. Comparison of the calculated strength limits 
with the experimental results confirmed the reliability of the developed method with an accuracy of 82–85%. 

For the first time, analytical modelling of the destruction process of cylindrical rock samples caused by wedge-
shaped destruction has been performed, taking into account internal and external friction factors. The proposed method 
allows determining the parameters of stress-strain diagrams of cylindrical rock samples with wedge-shaped destruction 
using four property indicators that can be easily established experimentally in mining conditions, where the calculation 
results can be quickly used to assess the effectiveness of destruction during disintegration. 
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1. Introduction 
The effective operation of mining enterprises engaged in both open-pit and un-

derground mineral extraction determines the sustainable development of industrial 
regions such as the Lviv-Volyn Basin, Western Donbas, Kryvbas, and others.  

Mining at great depths leads to changes in the stress-strain state of the rock mass, 
an increase in rock pressure, which entails deformation of the earth's surface, shifts, 
subsidence, the formation of voids, and the development of fracturing in the rock 
mass. 

Controlling the stress-strain state of the rock mass will make it possible to predict 
and ensure the safe development of mining operations during the exploitation of 
enterprises. 

One of the key characteristics that are important for managing the stress-strain 
state of rock mass and ensuring its effective destruction during disintegration are the 
strength limit and residual strength indicators of samples [1–5]. These parameters are 
determined based on diagrams that reflect the dependence of normal stress on longi-
tudinal deformation during the ultimate failure of materials [6–8]. 

To control the stress-strain state of rock masses and ensure their effective 
disintegration, it is necessary to know the strength limit and residual strength of 
samples, determined from the “longitudinal stress-strain” diagrams of their ultimate 
failure. 
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Prismatic or cylindrical samples are used for the experimental determination of 
rock failure diagram parameters [8–10]. Methods for the analytical determination of 
parameters for prismatic samples are described in detail in [11]. However, in practice, 
cylindrical samples obtained from core drilling are used more often than prismatic 
ones. This creates a need for analytical methods for calculating the strength of 
cylindrical samples. 

 
2. Methods 

Under uniaxial compression of cylindrical samples, a wedge-shaped fracture 
pattern is observed (Fig. 1). 

The analytical determination of the strength of samples with this type of failure 
can be performed using the proposed methodology. To characterize the process of 
rock failure, Coulomb's criterion is effectively applied, which is based on the 
maximum effective tangential stresses arising on slip lines or, more preferably, on 
slip surfaces (SS). In works [12–18], Coulomb's criterion for cohesive media is based 
on the assumption that the shear resistance of rock τα on the inclined surface under 
consideration is determined as the sum of two factors: the ultimate strength in pure 
shear and a component proportional to the normal stress σα on this surface (with 
compression considered positive), which is caused by internal friction. 

 

 
pyramidal form   diagonal form 

 
Figure 1 – Forms of rock sample destruction according to Baron L.I. 

 
When the sample is destroyed on the SS, a crack forms. As it develops, part of the 

material loses its connection with the load area. Based on the flat deformation model, 
the remaining load-bearing part of the sample material can be determined at any giv-
en moment by the known position of the tip of one or two cracks. This value corre-
sponds to the initial area of the sample minus the area freed from load as a result of 
crack growth along the SS. The part of the sample freed from load will correspond to 
the values of the abscissa of the crack tip as αyctgx = , where у – ordinate of the OY 
axis, α – angle of inclination of SS at the crack tip relative to the x-axis. Taking into 
account the stresses σy at the crack tip, its coordinates, and the patterns of the contact 
stress distribution function on the main part of the sample, it is possible to develop a 
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method for calculating the parameters of fracture diagrams based on Coulomb's crite-
rion. This approach requires data on four key characteristics of the material: shear 
strength, external (contact) and internal friction coefficients, and elastic modulus. 

First, let us consider the concept of test specimen failure. Figure 2 shows a dia-
gram of a specimen subjected to a vertical load, Figure 2 shows a diagram of a sam-
ple subjected to vertical loading, where m is the point of failure. In addition, the spec-
imen is subject to τc – contact tangential stresses arising from friction and directed 
inward, counteracting transverse deformation, m – fracture initiation point. The coor-
dinate system is defined with its center at the upper left corner of the specimen. On 
the upper surface of the left longitudinal part of the specimen, the tangential stresses 
are positive, while on the lower side, negative values are recorded. For the right half, 
the signs are reversed. It is important to note that under the action of a vertical load, 
the specimen takes on a convex shape. Due to this, the rule of parity of tangential 
stresses becomes applicable at the corners of the specimen. 

 

 
а)                                                    b) 

 
c)                                              d) 

 
а) – at the moment of pre-fracture; b) – at the moment of wedge edge emergence; c) – at the mo-

ment of wedge edge formation; d) – at the moment of wedge formation 
 

Figure 2 – Diagram of wedge formation during compression of a rock sample 
 

The wedge shape appears on one of the halves of the contact plane and is charac-
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terized by the intersection of the SS with the vertical plane of symmetry with a transi-
tion to the opposite side of the sample. First of all, it is necessary to determine the 
direction of crack development – from top to bottom or from bottom to top. Its for-
mation is possible on the contact plane where the resistance to destruction is the low-
est. 

The essence of the problem remains unchanged if we consider the crack develop-
ment in accordance with the diagram shown in Figure 2, starting from the upper hori-
zontal plane on the right side of the sample. This approach is more intuitive. Based on 
the analysis of the figure, it can be noted that the interaction of a heterogeneous pair 
of sliding surfaces is considered: one of them is convex, and the other is concave. At 
the point of their contact, the stress values must be the same. This point of contact is 
point О/ on the vertical plane of symmetry (Fig. 2), where the contact tangential 
stresses are zero. Let us imagine that a crack first forms at point n, at a distance хо of 
from the right corner of the sample. According to our assumptions, based on the ac-
cepted scheme in Fig. 2, the crack develops along SS ξп, the second (left) of which 
connects at the moment when the crack reaches SS η, at the point where the load on it 
reaches a value exceeding that on SS ξd. 

To describe the evolution of the wedge-shaped fracture of a cylindrical specimen, 
it is necessary to develop a law of contact stress distribution. For a prismatic speci-
men of unit width L. Prandtl, this law is represented by formula (1): 
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σσ , (1) 

 
where 

0уσ – is the vertical normal stress at the corner point of the sample, Pa; kf  – is 
the coefficient of contact friction; x  – is the abscissa of the point under consideration, 
m; h  – is the height of the sample, m. 

Now we need to apply formula (1) to the area of the cylinder, but it must be dif-
ferent. Unlike the prismatic sample, in which the width of the sliding surface remains 
constant, in the cylindrical sample this surface expands all the time. Several models 
were tested in the study, but they did not give satisfactory results. Let us describe the 
proposed approach to the distribution law of contact normal stresses. 

 
3. Results and discussion 

First, let us write the formula for the circumference of a cylinder in the coordinate 
system yx −  (Fig. 3) 

 
  ( ) 222 ryrx =+− ,     (2) 

 
where x  and y – abscissa and ordinate of the point under consideration on the circle, 
m; r  – radius of the cylinder circle, m.  
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Fig. 3 shows: O  – the center of the sample circle; vY  and vX – the axes of the 
coordinate system; ϕ  – the angle of the segment solution, rad; a ,b , c and d – points 
on the circle limiting the length of the chords. 

 

 
 

Figure 3 – Diagram showing the formation of the bearing area during the development of two sym-
metrical cracks in a cylindrical specimen 

 
From the transformation of formula (2), we have 
 
 22 xrxy −= , (2)  

 
where y  – ordinate of the chord points, m. 

Then the formula for the length of the chord segment is  
 
 (3) 
 

where u  – diameter of the circle, m. 
Then, using expressions (1) and (3), we write down the formula for the distribu-

tion of vertical stress on the contact surface of a cylindrical sample, similar to L. 
Prandtl's formula for prismatic samples, while tying the abscissa x to one of the SS, 
for example, to the left SS ξl (Fig.2) 
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Let us write down, according to expression (4), the formula for the force acting on 

the part of the sample that is not under load at the moment of crack development, as 
follows: 

,2 2xuxa −=
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where yσ  – normal stress at the crack tip, Pa.  

Now, using tabulated integrals, we will solve the integrals of formula (5), taking 
into account that, according to [13], the distribution functions of normal contact 
stresses for different SS (Fig. 2) have different forms: 

 
at ux 5.0≥   
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where ( )ξxxA −+= 5.00 .        

at ux 5.0≤  
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where ( )ηxB −= 5.0 . 

To determine the specific force on the contact plane during crack propagation 
(beyond the elastic state), the force should be divided by the area not affected by the 
load. As a result, based on expressions (6) and (7), we determine the specific force on 
the load-bearing part of the sample, equal to πu2/4, (the area of a circle), minus the 
area that is no longer under load during crack propagation, 

  
at ux 5.0≥  
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Next, we determine the stresses σу at the crack tip. We use the method described 

in article [13] for a prismatic specimen. The stress calculation system for the right SS 
ξ must be formulated taking into account the condition that there is no contact friction 
on the plane of symmetry 
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where µ  and µρ arctg=  are the coefficient and angle of internal friction, rad; ξβ  is 
the angle of rotation of SS ξ  from contact friction at the crack tip, rad; 0k   is the ef-
fective tangential stress at point О, Pа. 
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In this case, the following condition must be satisfied: ux 5.0≥ξ  and xux −=ξ . 
The angle of inclination SS ξ  is determined by the formula: 
 

 ξξ βρπα +−=
24

3 . (11)  

 
Now let us consider the crack propagation along the left SS η  at ux 5.0≤ . The 

stresses 
η

σ y  are determined by the system of equations 
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where ηβ  and cβ  – turn angles  SS η  from contact friction on the SS itself and on 
the lower contact plane at point c , rad; 

In this case, the following condition must be observed: ux 5.0≤η , xx =η .  
The angle of inclination of the SS η  is described by formula (13): 
 

 
лηη βρπα +−=

24
3 . (13) 

  
Now, using the specific force acting on the load-bearing (non-deformed) part of 

the specimen, we proceed to calculate the stresses across its initial circular area, equal 
to πu2/4.  

Using formulas (8) and (9) together with expressions (10–13), the specific force 
values on the load-bearing part of the sample are calculated. Knowing these values, it 
becomes possible to determine the current values of deformations during crack 
growth, which is one of the key parameters of the “longitudinal stress-strain” diagram 
for uniaxial compression of specimens, according to the well-known formula: 

 

 
E
ρε = , (14) 

 
where E  –  modulus of elasticity, Pa. 
A straight line is constructed on the true diagram (Fig. 4) using formula (14). 
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Next, it is necessary to determine the value of the second parameter—the current 
strength of the sample on the critical branch of the conditional diagram. To do this, 
we multiply the specific force by the ratio of the bearing area of the sample to its ini-
tial area. The result of this multiplication should provide the initial stress value 
equivalent to the specific force and also reflect the decrease in strength on the limit 
branch of the diagram. To do this, we express the area under load as a segment 
(Fig. 3) using the known formula: 
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where ϕ  – angle of the segment solution, rad.  

Angle ϕ        
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Then the area of the segment abv  (Fig. 3) during crack propagation 
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Then the bearing area of the sample circle   
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As a result of the research, the strength formula on the limit branch of the 

“longitudinal stress-strain” diagram is as follows: 
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Using formulas (14) – (19) together with expressions (8–17), it is possible to de-

termine, using the iteration method on a computer, the parameters of the true and 
conditional “longitudinal stress-strain” diagrams, which researchers obtain on presses 
with truncated wedge-shaped failure of cylindrical samples as a function of the limit 
branch ( )εϕσ =с . Fig. 4 shows these functions for a modulus of elasticity 
E = 2000 МPа and various values of rock property indices for a sample with a height 
and diameter equal to one. An important conclusion can be drawn from the analysis 
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of the diagrams: the slope of the limit curve )(εσ Ψ=c , the so-called decay modulus 
М, which researchers take as a constant characteristic of the material similar to the 
elastic modulus E, depends on the numerical values of the rock property indices and 
is not a constant. To confirm this conclusion, branch 5 is shown in Fig. 4 at ƒk = 0.  

 

 
 

1 – true diagram; 2 – ρ=20°; 3 – ρ=30°; 4 – ρ=39°; 5 – ρ=20°,  f = 0.  
 

Figure 4 – Extreme wedge-shaped failure curves of samples at kn = 10 МPа, f = 0.25, Е = 2000 МPа 
 

As can be seen in Fig. 4, there is a bend in the curves, and their linearity ends at 
low values of σс. Researchers indicate that with a wedge-shaped fracture and a load 
exceeding 50–70% of the maximum, there is significant nonlinearity. It should also 
be noted that in the initial part of the limit curve, there is a so-called hardening of the 
material according to the increasing curve, followed by its decline. 

Many researchers explain the roundness of the limit branches of the diagrams by 
the plastic properties of rocks. However, in our opinion, this explanation does not 
correspond to reality. Rocks are highly brittle, and the roundness of the limit branches 
rather reflects the complex nonlinear relationships between stresses and areas re-
leased from the load during the formation of cracks. It is important to note that 
Hooke's law is observed on the load-bearing part of the sample (line 1), and the true 
diagram takes the form of a straight line, despite the presence of nonlinearities in the 
conditional diagrams. 

To confirm the reliability of the proposed method, we will compare the calculated 
strength limit values with experimental data taken from the cadastre (Table 1). The 
average level of coincidence was 85.2%, which indicates a good degree of corre-
spondence for rocks according to the method of assessing the convergence of calcu-
lated and experimental data developed by Prof. L.I. Baron. 

 
4. Conclusions 

Based on the results of the studies conducted, the following conclusions were 
formulated: 

1. A mathematical model for calculating stress-strain diagrams for wedge-type 
rock failure has been developed, based on the use of four basic indicators of their 
physical properties: the shear strength of the material (kn), the coefficients of contact 
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and internal friction (ƒ and μ), and the modulus of elasticity (E). All these parameters 
can be experimentally determined in laboratory conditions using simple technical 
means available at production enterprises. 
 

Table 1 – Comparison of calculated strength limits with experimental data 
for wedge-shaped failure of rock samples [17] 

Rock type 
Experimental Calculated Cadastre 

[6], р. τsr, МPа ρ , degrees σcomp, МPа σcomp, МPа Similarity, % 
argillite 4.0 35 24.0 22 84.6 172 

sandstone 6.63 36 32.5 37 88.3 172 
hornfels 25.0 39 138.0 158.0 89.1 66 

shale 6.7 35 35.0 37.2 96.9 159 
argillite 7.85 35 46.5 87.3 84.3 172 

porphyry skarned diabase 15.0 37 78.5 87.3 91.7 66 
argillite 5.0 30 24.0 30 88.3 171 
siltstone 6.5 31 35.0 32.3 78.9 174 

sandstone 10.0 30 55.0 48.2 74.2 158 
limestone 12.0 30 60.0 58.2 82.2 158 

marbled limestone 8.0 35 37.0 44.3 87.0 66 
oxidized magnetite 20.0 32 97.0 103.2 93.8 66 

heavily altered monazite 28.0 22 164 122 77.4 104 
hematized tuff 25.0 36 134,0 145 97.8 67 
garnet skarn 20.0 39 112.0 128 83,0 67 

magnetite-garnet skarn 10.0 39 68.0 64.0 96.2 67 
hornfel 16.0 34 84.0 85.0 96.5 67 

 
2. Based on the maximum and minimum values of normal stresses recorded at the 

limit sections of the curve diagrams, the values of the limits and residual strength of 
the samples can be determined. These indicators are equivalent to analytical data cal-
culated from diagrams of the dependence of normal stress on longitudinal defor-
mation obtained on press equipment. Comparison of the calculated strength limits 
with the results of experiments confirmed the reliability of the developed method 
with an accuracy of 82–85%. 

3. The proposed method will allow determining the parameters of stress-strain di-
agrams for cylindrical rock samples during their wedge-shaped failure. It is based on 
four material characteristics that can be easily determined during experiments directly 
at mining enterprises.  

4. For the first time, the process of destruction of cylindrical rock samples caused 
by wedge-shaped destruction has been modeled, taking into account internal and ex-
ternal friction factors, the use of which will allow predicting and controlling the 
stress-strain state of the rock mass, ensuring the safe development of mining opera-
tions in the process of mining enterprises. 
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Анотація. Управління напружено-деформованим станом масиву гірських порід дозволить спрогнозувати та 
забезпечити безпечний розвиток гірничих робіт у процесі експлуатації підприємств. Тому авторами встановлено, 
що однією з ключових характеристик, які є значущими для управління напружено-деформованим станом масиву 
гірських порід та забезпечення їх ефективного руйнування в процесі дезінтеграції, є показники межі міцності та 
залишкової міцності зразків. Дані параметри визначаються на основі діаграм, які відображають залежність нор-
мальної напруги від поздовжньої деформації при граничному руйнуванні матеріалів. Також слід зазначити, що 
результати проведених досліджень необхідні безпосередньо на гірничому підприємстві для ухвалення рішення з 
урахуванням отриманої інформації про властивості гірських порід, а на самих об'єктах дане обладнання відсутнє. 
Мета статті – розробка аналітичного методу розрахунку параметрів діаграм розчавлювання циліндричних зразків 
гірських порід клинової форми їх руйнування для управління напружено-деформованим станом гірничого масиву 
та підвищення ефективності руйнування при дезінтеграції. Авторами в роботі аналітично проведено моделюван-
ня процесу руйнування циліндричних зразків гірських порід за їх клинової форми руйнування з використанням 
експериментальних значень чотирьох показників властивостей гірських порід – межі опору зсуву, коефіцієнтів 
внутрішнього і зовнішнього тертя, модуля пружності. Межі та залишкова міцність зразків еквівалентні аналітичним 
даним, які обчислюються за діаграмами залежності нормальної напруги від поздовжньої деформації, одержува-
ним на пресовому устаткуванні. Порівняння розрахункових меж міцності з наслідками експериментів підтвердило 
надійність розробленого методу з точністю не більше 82-85 %. 

Вперше виконано аналітичне моделювання процесу руйнування циліндричних зразків гірських порід, що 
обумовлене клиноподібною формою руйнування, з урахуванням факторів внутрішнього та зовнішнього тертя. За 
результатами проведених досліджень встановлено, що запропонований метод дозволяє визначити параметри 
діаграм напруга-деформація циліндричних зразків гірських порід при їх клиновій формі руйнування з використан-
ням чотирьох показників властивостей, які простими способами можуть бути експериментально в умовах гірничих 
підприємств, де результати розрахунку можуть бути оперативно використані для оцінки ефективності руйнування 
при дезінтеграції. 

Ключові слова: гірська порода; межа міцності; руйнування; тріщина; діаграма "напруга-деформація". 
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