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Abstract. Managing the stress-strain state of rock masses will enable the prediction and assurance of safe mining
operations during the exploitation of enterprises. Therefore, the authors of the article have established that one of the
key characteristics that are significant for controlling the stress-strain state of rock masses and ensuring their effective
destruction during disintegration are the strength limit and residual strength indicators of the samples. These parameters
are determined based on diagrams that reflect the dependence of normal stress on longitudinal deformation during the
ultimate destruction of materials. It should also be noted that the results of the studies conducted are needed directly at
the mining enterprise to make decisions based on the information obtained about the properties of rocks, and this
equipment is not available at the sites themselves. The purpose of the article is to develop an analytical method for
calculating the parameters of cylindrical rock sample crushing diagrams based on their wedge-shaped failure mode in
order to control the stress-strain state of the rock mass and increase the efficiency of failure during disintegration. The
authors analytically modelled the process of destruction of cylindrical rock samples during wedge-shaped destruction
using experimental values of four rock property indicators: shear strength, internal and external friction coefficients, and
elastic modulus. The limits and residual strength of the samples are equivalent to analytical data calculated from the
normal stress-longitudinal strain diagrams obtained on pressing equipment. Comparison of the calculated strength limits
with the experimental results confirmed the reliability of the developed method with an accuracy of 82-85%.

For the first time, analytical modelling of the destruction process of cylindrical rock samples caused by wedge-
shaped destruction has been performed, taking into account internal and external friction factors. The proposed method
allows determining the parameters of stress-strain diagrams of cylindrical rock samples with wedge-shaped destruction
using four property indicators that can be easily established experimentally in mining conditions, where the calculation
results can be quickly used to assess the effectiveness of destruction during disintegration.
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1. Introduction

The effective operation of mining enterprises engaged in both open-pit and un-
derground mineral extraction determines the sustainable development of industrial
regions such as the Lviv-Volyn Basin, Western Donbas, Kryvbas, and others.

Mining at great depths leads to changes in the stress-strain state of the rock mass,
an increase in rock pressure, which entails deformation of the earth's surface, shifts,
subsidence, the formation of voids, and the development of fracturing in the rock
mass.

Controlling the stress-strain state of the rock mass will make it possible to predict
and ensure the safe development of mining operations during the exploitation of
enterprises.

One of the key characteristics that are important for managing the stress-strain
state of rock mass and ensuring its effective destruction during disintegration are the
strength limit and residual strength indicators of samples [1-5]. These parameters are
determined based on diagrams that reflect the dependence of normal stress on longi-
tudinal deformation during the ultimate failure of materials [6—8].

To control the stress-strain state of rock masses and ensure their effective
disintegration, it is necessary to know the strength limit and residual strength of
samples, determined from the “longitudinal stress-strain” diagrams of their ultimate
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Prismatic or cylindrical samples are used for the experimental determination of
rock failure diagram parameters [8—10]. Methods for the analytical determination of
parameters for prismatic samples are described in detail in [11]. However, in practice,
cylindrical samples obtained from core drilling are used more often than prismatic
ones. This creates a need for analytical methods for calculating the strength of
cylindrical samples.

2. Methods

Under uniaxial compression of cylindrical samples, a wedge-shaped fracture
pattern is observed (Fig. 1).

The analytical determination of the strength of samples with this type of failure
can be performed using the proposed methodology. To characterize the process of
rock failure, Coulomb's criterion is effectively applied, which is based on the
maximum effective tangential stresses arising on slip lines or, more preferably, on
slip surfaces (SS). In works [12—18], Coulomb's criterion for cohesive media is based
on the assumption that the shear resistance of rock ta on the inclined surface under
consideration is determined as the sum of two factors: the ultimate strength in pure
shear and a component proportional to the normal stress o, on this surface (with
compression considered positive), which is caused by internal friction.

pyramidal form diagonal form

Figure 1 — Forms of rock sample destruction according to Baron L.I.

When the sample is destroyed on the SS, a crack forms. As it develops, part of the
material loses its connection with the load area. Based on the flat deformation model,
the remaining load-bearing part of the sample material can be determined at any giv-
en moment by the known position of the tip of one or two cracks. This value corre-
sponds to the initial area of the sample minus the area freed from load as a result of
crack growth along the SS. The part of the sample freed from load will correspond to
the values of the abscissa of the crack tip as x = yctga , where y — ordinate of the OY
axis, a — angle of inclination of SS at the crack tip relative to the x-axis. Taking into
account the stresses oy, at the crack tip, its coordinates, and the patterns of the contact
stress distribution function on the main part of the sample, it is possible to develop a
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method for calculating the parameters of fracture diagrams based on Coulomb's crite-
rion. This approach requires data on four key characteristics of the material: shear
strength, external (contact) and internal friction coefficients, and elastic modulus.

First, let us consider the concept of test specimen failure. Figure 2 shows a dia-
gram of a specimen subjected to a vertical load, Figure 2 shows a diagram of a sam-
ple subjected to vertical loading, where m is the point of failure. In addition, the spec-
imen is subject to 7. — contact tangential stresses arising from friction and directed
inward, counteracting transverse deformation, m — fracture initiation point. The coor-
dinate system is defined with its center at the upper left corner of the specimen. On
the upper surface of the left longitudinal part of the specimen, the tangential stresses
are positive, while on the lower side, negative values are recorded. For the right half,
the signs are reversed. It is important to note that under the action of a vertical load,
the specimen takes on a convex shape. Due to this, the rule of parity of tangential
stresses becomes applicable at the corners of the specimen.
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a) — at the moment of pre-fracture; b) — at the moment of wedge edge emergence; c) — at the mo-
ment of wedge edge formation; d) — at the moment of wedge formation

Figure 2 — Diagram of wedge formation during compression of a rock sample

The wedge shape appears on one of the halves of the contact plane and is charac-
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terized by the intersection of the SS with the vertical plane of symmetry with a transi-
tion to the opposite side of the sample. First of all, it is necessary to determine the
direction of crack development — from top to bottom or from bottom to top. Its for-
mation is possible on the contact plane where the resistance to destruction is the low-
est.

The essence of the problem remains unchanged if we consider the crack develop-
ment in accordance with the diagram shown in Figure 2, starting from the upper hori-
zontal plane on the right side of the sample. This approach is more intuitive. Based on
the analysis of the figure, it can be noted that the interaction of a heterogeneous pair
of sliding surfaces is considered: one of them is convex, and the other is concave. At
the point of their contact, the stress values must be the same. This point of contact is
point O’ on the vertical plane of symmetry (Fig. 2), where the contact tangential
stresses are zero. Let us imagine that a crack first forms at point #, at a distance x, of
from the right corner of the sample. According to our assumptions, based on the ac-
cepted scheme in Fig. 2, the crack develops along SS ¢, the second (left) of which
connects at the moment when the crack reaches SS #, at the point where the load on it
reaches a value exceeding that on SS &,

To describe the evolution of the wedge-shaped fracture of a cylindrical specimen,
it is necessary to develop a law of contact stress distribution. For a prismatic speci-
men of unit width L. Prandtl, this law is represented by formula (1):

2ka
O'yl- :ayo (1+ P j, (D

where o, —is the vertical normal stress at the corner point of the sample, Pa; f; —is

the coefficient of contact friction; x — is the abscissa of the point under consideration,
m; & — is the height of the sample, m.

Now we need to apply formula (1) to the area of the cylinder, but it must be dif-
ferent. Unlike the prismatic sample, in which the width of the sliding surface remains
constant, in the cylindrical sample this surface expands all the time. Several models
were tested in the study, but they did not give satisfactory results. Let us describe the
proposed approach to the distribution law of contact normal stresses.

3. Results and discussion

First, let us write the formula for the circumference of a cylinder in the coordinate
systemx — y (Fig. 3)

(x—r)f +y*=r2, )

where x and y— abscissa and ordinate of the point under consideration on the circle,
m; » —radius of the cylinder circle, m.
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Fig. 3 shows: O — the center of the sample circle; vY and vX — the axes of the
coordinate system; ¢ — the angle of the segment solution, rad; a,b, cand d— points

on the circle limiting the length of the chords.
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Figure 3 — Diagram showing the formation of the bearing area during the development of two sym-
metrical cracks in a cylindrical specimen

From the transformation of formula (2), we have

y:\/2rx—x2 , (2)

where y — ordinate of the chord points, m.
Then the formula for the length of the chord segment is

a=2\/ux—x2, 3)

where u — diameter of the circle, m.

Then, using expressions (1) and (3), we write down the formula for the distribu-
tion of vertical stress on the contact surface of a cylindrical sample, similar to L.
Prandtl's formula for prismatic samples, while tying the abscissa x to one of the SS,
for example, to the left SS &, (Fig.2)

2.\ |ux —x2 4
il + ka@/uxge—xg% . (4)
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Let us write down, according to expression (4), the formula for the force acting on
the part of the sample that is not under load at the moment of crack development, as
follows:
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0
where o, — normal stress at the crack tip, Pa.

Now, using tabulated integrals, we will solve the integrals of formula (5), taking
into account that, according to [13], the distribution functions of normal contact
stresses for different SS (Fig. 2) have different forms:
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To determine the specific force on the contact plane during crack propagation

(beyond the elastic state), the force should be divided by the area not affected by the
load. As a result, based on expressions (6) and (7), we determine the specific force on
the load-bearing part of the sample, equal to zmu?/4, (the area of a circle), minus the
area that is no longer under load during crack propagation,

at x>0.5u
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Next, we determine the stresses o; at the crack tip. We use the method described
in article [13] for a prismatic specimen. The stress calculation system for the right SS
§ must be formulated taking into account the condition that there is no contact friction
on the plane of symmetry

1 kn(1+sinp l—bgj-exp(Z,u-,Béz)
o, =— ; —ko
S u 1—sinp
; (10)
. (O'y§+an1—sinp l—bé)
| 0" (1+sin p)

where 4 and p = arctgu are the coefficient and angle of internal friction, rad; S is

the angle of rotation of SS & from contact friction at the crack tip, rad; k; 1s the ef-
fective tangential stress at point O, Pa.
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In this case, the following condition must be satisfied: x; > 0.5u and xz =u — x.

The angle of inclination SS & is determined by the formula:

RY/4
a§=7—§+ﬁg. (11)
Now let us consider the crack propagation along the left SS 7 at x<0.5u. The
stresses o, - are determined by the system of equations

kn(1+sinp l—b,gj-exp(— 2/4(,6’77 +ﬂc))

S
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where f, and . — turn angles SS 7 from contact friction on the SS itself and on

the lower contact plane at point ¢, rad;
In this case, the following condition must be observed: x,, <0.5u, x, =x.

The angle of inclination of the SS 7 is described by formula (13):

RY/4
an27—§+ﬂ%. (13)

Now, using the specific force acting on the load-bearing (non-deformed) part of
the specimen, we proceed to calculate the stresses across its initial circular area, equal
to mu/4.

Using formulas (8) and (9) together with expressions (10—13), the specific force
values on the load-bearing part of the sample are calculated. Knowing these values, it
becomes possible to determine the current values of deformations during crack
growth, which is one of the key parameters of the “longitudinal stress-strain” diagram
for uniaxial compression of specimens, according to the well-known formula:

Yo,
E="—, 14
E 14

where £ — modulus of elasticity, Pa.
A straight line is constructed on the true diagram (Fig. 4) using formula (14).
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Next, it is necessary to determine the value of the second parameter—the current
strength of the sample on the critical branch of the conditional diagram. To do this,
we multiply the specific force by the ratio of the bearing area of the sample to its ini-
tial area. The result of this multiplication should provide the initial stress value
equivalent to the specific force and also reflect the decrease in strength on the limit
branch of the diagram. To do this, we express the area under load as a segment
(Fig. 3) using the known formula:

2
Sambd = %(a) —sing), (15)

where ¢ — angle of the segment solution, rad.

Angle ¢
B ) ~ u—2x§ 2
@ = 2arcsin , |1 : (16)
u

Then the area of the segment abv (Fig. 3) during crack propagation

2 2

u . u . 2 2
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Then the bearing area of the sample circle

2 2
S :[WT—%(arcsinL/uxéz —xé% —2(1—2x§ L/U}Cf —x% )] (18)

As a result of the research, the strength formula on the limit branch of the
“longitudinal stress-strain” diagram is as follows:

2 2
o, =4—102[WT—%(arcsin21/ux§ —xé% —2(1—2x§ L/uxéc —xé% j} (19)
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Using formulas (14) — (19) together with expressions (8—17), it is possible to de-
termine, using the iteration method on a computer, the parameters of the true and
conditional “longitudinal stress-strain” diagrams, which researchers obtain on presses
with truncated wedge-shaped failure of cylindrical samples as a function of the limit
branch o, =¢(¢). Fig. 4 shows these functions for a modulus of elasticity

E =2000 MPa and various values of rock property indices for a sample with a height
and diameter equal to one. An important conclusion can be drawn from the analysis
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of the diagrams: the slope of the limit curve o, = ‘¥(¢), the so-called decay modulus

M, which researchers take as a constant characteristic of the material similar to the
elastic modulus E, depends on the numerical values of the rock property indices and
is not a constant. To confirm this conclusion, branch 5 is shown in Fig. 4 at f, = 0.
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Figure 4 — Extreme wedge-shaped failure curves of samples at k, = 10 MPa, f=0.25, E = 2000 MPa

As can be seen in Fig. 4, there is a bend in the curves, and their linearity ends at
low values of o.. Researchers indicate that with a wedge-shaped fracture and a load
exceeding 50-70% of the maximum, there is significant nonlinearity. It should also
be noted that in the initial part of the limit curve, there is a so-called hardening of the
material according to the increasing curve, followed by its decline.

Many researchers explain the roundness of the limit branches of the diagrams by
the plastic properties of rocks. However, in our opinion, this explanation does not
correspond to reality. Rocks are highly brittle, and the roundness of the limit branches
rather reflects the complex nonlinear relationships between stresses and areas re-
leased from the load during the formation of cracks. It is important to note that
Hooke's law is observed on the load-bearing part of the sample (line 1), and the true
diagram takes the form of a straight line, despite the presence of nonlinearities in the
conditional diagrams.

To confirm the reliability of the proposed method, we will compare the calculated
strength limit values with experimental data taken from the cadastre (Table 1). The
average level of coincidence was 85.2%, which indicates a good degree of corre-
spondence for rocks according to the method of assessing the convergence of calcu-
lated and experimental data developed by Prof. L.I. Baron.

4. Conclusions

Based on the results of the studies conducted, the following conclusions were
formulated:

1. A mathematical model for calculating stress-strain diagrams for wedge-type
rock failure has been developed, based on the use of four basic indicators of their
physical properties: the shear strength of the material (%), the coefficients of contact
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and internal friction (f and p), and the modulus of elasticity (E). All these parameters
can be experimentally determined in laboratory conditions using simple technical
means available at production enterprises.

Table 1 — Comparison of calculated strength limits with experimental data
for wedge-shaped failure of rock samples [17]

Experimental Calculated Cadastre
Rock type
7w, MPa | p, degrees |Geomp, MPa| Geomp, MPa | Similarity, % [6], p.

argillite 4.0 35 24.0 22 84.6 172
sandstone 6.63 36 32.5 37 88.3 172
hornfels 25.0 39 138.0 158.0 89.1 66
shale 6.7 35 35.0 37.2 96.9 159
argillite 7.85 35 46.5 87.3 84.3 172
porphyry skarned diabase| 15.0 37 78.5 87.3 91.7 66
argillite 5.0 30 24.0 30 88.3 171
siltstone 6.5 31 35.0 323 78.9 174
sandstone 10.0 30 55.0 48.2 74.2 158
limestone 12.0 30 60.0 58.2 82.2 158
marbled limestone 8.0 35 37.0 44.3 87.0 66
oxidized magnetite 20.0 32 97.0 103.2 93.8 66
heavily altered monazite 28.0 22 164 122 77.4 104
hematized tuff 25.0 36 134,0 145 97.8 67
garnet skarn 20.0 39 112.0 128 83,0 67
magnetite-garnet skarn 10.0 39 68.0 64.0 96.2 67
hornfel 16.0 34 84.0 85.0 96.5 67

2. Based on the maximum and minimum values of normal stresses recorded at the
limit sections of the curve diagrams, the values of the limits and residual strength of
the samples can be determined. These indicators are equivalent to analytical data cal-
culated from diagrams of the dependence of normal stress on longitudinal defor-
mation obtained on press equipment. Comparison of the calculated strength limits
with the results of experiments confirmed the reliability of the developed method
with an accuracy of 82—85%.

3. The proposed method will allow determining the parameters of stress-strain di-
agrams for cylindrical rock samples during their wedge-shaped failure. It is based on
four material characteristics that can be easily determined during experiments directly
at mining enterprises.

4. For the first time, the process of destruction of cylindrical rock samples caused
by wedge-shaped destruction has been modeled, taking into account internal and ex-
ternal friction factors, the use of which will allow predicting and controlling the
stress-strain state of the rock mass, ensuring the safe development of mining opera-
tions in the process of mining enterprises.
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AHoTauif. YnpaBniHHS HanpyxeHo-0eOopMOBaHUM CTaHOM MacuBy FpCbKUX NOpif 4O3BONUTL CMPOrHO3yBaTH Ta
3abesneuntn 6e3neyHnit PO3BUTOK ripHUUMX POBIT y NpoLeci ekcnnyaTawii nignpuemcTs. ToMy aBTopamu BCTAHOBIIEHO,
L0 OAHIEI 3 KIOYOBUX XapaKTEPUCTUK, SIKi € 3HAYYLMMI ANS YNpaBniHHS HanpyXeHo-AeOopMOBaHUM CTaHOM MacuBy
ripcbkux Nnopig Ta 3abe3neyeHHs iX eqeKTUBHOrO pyiHyBaHHS B NPOLEC AesiHTerpayii, € NOKas3HWK/ MexXi MiLHOCTI Ta
3aMMLLKOBOI MiLHOCTI 3paskiB. [laHi napameTpn BU3HA4aAKOTLCS HA OCHOBI diarpam, siki BifoOpaxaloTb 3aexHiCTb HOp-
ManbHOI Hanpyri Bif NO3OOBXHLOI AeopMaLii Npu rpaHUYHOMY pYiHYBaHHI MaTepianis. Takox cnif 3asHauuTy, Lo
pesynbTaTh NpoBeAEeHNX A0CHigXeHb HeobXiaHi Ge3nocepeaHbO Ha ripHUYOMY NIANPUEMCTBI 415 YXBANEHHS! PiLLEHHS 3
ypaxyBaHHsIM OTPUMaHOT iHchopMaLlil PO BIACTUBOCTI ripCbKMX Nopig, a Ha camux ob'ekTax AaHe ob6nafHaHHS BiACYTHE.
Merta cratTi — po3pobka aHaniTM4HOro MeToAy pPO3paxyHKy napameTpiB Aiarpam po3yaBntoBaHHS LWNIHAPUYHUX 3paskiB
ripCbKWX NOpiZ KNMHOBOI (hOPMM IX PYHYBaHHS ANS YNPaBMiHHA HanpyXeHo-4eOpMOBaHUM CTaHOM FiPHUYOro MacuBy
Ta NiABULLEHHS eChEKTUBHOCTI PyIHYBaHHS Npu AesiHTerpalii. ABTopamm B pob0Ti aHaniTMYHO NPOBEAEHO MOAENI0BAH-
HS NPOLECY PYMHYBAHHA LMNIHAPUYHKX 3pasKiB ripCbKUX Nopid 3a iX KMMHOBOI (DOPMU PYIUHYBAHHS 3 BUKOPUCTAHHAM
eKCNepUMEHTaNbHUX 3HaYeHb YOTUPLOX MOKa3HUKIB BNACTUBOCTEN MPChKUX MOPIA — Mexi onopy 3cyBy, KOedilieHTiB
BHYTPILUHBOrO | 30BHILLHLOIO TEPTS, MOZYNS NPYXHOCTI. Mexi Ta 3anuLLKoBa MiLHICTb 3pa3kiB eKBiBaNEeHTHI aHaniTU4HUM
AaHUM, [Ki 0BYMCIIITLECA 3a Aiarpamamit 3anexHOCTi HopManbHOT Hanpyri Big NO3A0BXHLOI Aedopmalii, ogepxysa-
HUM Ha NPEecoBOMY YyCTaTKyBaHHi. MOPIBHAHHS PO3PaXyHKOBMX MEX MILHOCTI 3 HaCniZKaMu eKCnepuMEHTIB nigTBepaMno
HaginHiCTb po3pobreHoro MeToay 3 TOUHICTIO He binbLue 82-85 %.

Bneplue BWKOHAHO aHaniTUYHE MOLENIOBAHHS MPOLECY PYMHYBaHHSA LMNIHAPUYHUX 3paskiB ripCbKuX nopig, Wo
00yMoBneHe KNMHOMoAibHO (POPMOLO PyMHYBaHHS, 3 YpaxyBaHHAM (DaKTOPIB BHYTPILUHLOIO Ta 30BHILUHLOrO TepTs. 3a
pesynbTatamu NpoBefeHUX AOCHiMKEHb BCTAHOBMEHO, L0 3anponoHOBaHUI METOZ JO3BONSE BU3HAYUTI NapameTpu
piarpam Hanpyra-gedopmaulis UniHapUYHUX 3paskiB ripCbKUX NOpig npu X KIMWHOBIK ()opMi pyitHyBaHHS 3 BUKOPUCTaH-
HAIM YOTMPLOX MOKA3HWKIB BNACTMBOCTEN, SIki NPOCTUMI cnocobami MOXyTb ByTh ekcnepyMeHTanbHO B yMOBaX MipHUYMX
nignpueMcTB, Ae pesynbTaTi Po3paxyHKy MOXyTb OyTW OnepaTMBHO BUKOPUCTAHI ANst OLHKW €CDEKTUBHOCTI PYiHYBaHHA
npu gesiHTerpawii.

KntovoBi cnoBa: ripcbka nopoga; Mexa MiLHOCTI; pyiHyBaHHS; TpiluMHa; Aiarpama "Hanpyra-gedopmauis”.



	MATHEMATICAL MODEL FOR CALCULATING THE PARAMETERS OF DIAGRAMS OF CRUSHING CYLINDRICAL SAMPLES OF ROCK SPECIES WITH THEIR WEDGE-SHAPED FORM OF DESTRUCTION
	Vasyliev D., Tynyna S., Kress D., Rizo Z., Kulak Ye.
	M.S. Poliakov Institute of Geotechnical Mechanics of the National Academy of Sciences of Ukraine
	pyramidal form   diagonal form
	Table 1 – Comparison of calculated strength limits with experimental data for wedge-shaped failure of rock samples [17]

